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Analyzed is the r eve r se  problem of the t ransient  gradiental  flow of a Shvedov-Bingham 
plastic through a flat channel and a cyl indrical  pipe. Equation s are  derived for  determining 
the distribution of tangential shear ing  s t r e s s e s  and for the p r e s s u r e  gradient  as a function 
of t ime,  these equations to be solved by an iteration scheme which is shown here .  

Viscoplast ic  media r ep resen t  one of the most important  rheological  models of a continuous medium 
in petroleum mechanics.  The state of the a r t  in r e s e a r c h  on the hydrodynamics of viscoplast ic  media 
(Shvedov-Bingham plast ics)  has been surveyed in [1, 2]. The problem of the t rans ient  gradiental  flow of 
a Shvedov-Bingham plast ic  has been solved in [3] by the method of success ive  approximations.  Here we 
will use the method of success ive  approximation for  solving the r eve r s e  problem of the t rans ient  gradiental 
flow of a viscoplast ic  medium. 

We consider  the following problem. A viscoplast ic  medium with the density p, the yield shearing 
s t r e s s  %, and the dynamic v iscos i ty  ~ (rheological pa r ame te r s  of the medium) begins at t ime t < 0 to flow 
through a flat channel ( -a  < x < a) or a cylindrical  pipe (0 < x < a) at a velocity u = u(x, t) (x denoting the 
t r ansve r se  coordinate) due to a p r e s s u r e  gradient  ~0(t) which var ies  in time. The flow equation for a con- 
tinuous medium will be 

Ou 10xk~, (1) 

with �9 = T(x, t) denoting the distribution of tangential shear ing s t r e s s e s  and with k = 0 for the plane case or 
k = 1 for the cyl indrical  case (axial symmet ry) .  The rheological  law for a viscoplast ic  medium in one- 
dimensional rec t i l inear  motion with Ou/0x < 0 (in the plane case we consider  the upper half of the channel) 
becomes 

OU 

Ou 
Ox = o, I'~J < ' % .  (3) 

The channel wall at x = a remains  s ta t ionary throughout the t ime Interval under considerat ion and, 
there fore ,  according to the hypothesis that the fluid adheres  to the wall, we have 

u (a, t) = O. (4)  

as the kinematic const ra int  on the veloci ty  of the fluid medium. Integrating Eq. (2) with respec t  to variable 
x and consider ing the condition at the channel wall, we have 

u (x, t) = 1 ~,rd.x + "C~ a). (5) 

~7 
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Rela t ion  (5) will  y ie ld  the ve loc i ty  of the fluid, if the d i s t r ibu t ion  of tangent ia l  s h e a r i n g  s t r e s s e s  is known. 

The  flow equat ion (1) can be r ewr i t t en  as  
x 

~ (x~). (6) 
a 

The condition for the existence of a quasirigid core in the s tream within x -< 6(t) is the f i rs t  condition at 

the sought boundary: 

(x, t)[.--8(O = - -  2:0. (7) 

This  quas i r ig id  c o r e  in the  s t r e a m  moves  as  a s ingle  body  and, as  a consequence ,  we have 

x=5(t) 
, ~o (8) 

l Ox ( x ~ )  = - (~ -~ l )  6 ( t )  " 

Since the flow evolved f r o m  a condi t ion o f  r e s t ,  when the en t i r e  r eg ion  had been quas i r ig id ,  hence  the 
fol lowing init ial  condit ion appl ies  to 6(t): 

6 (0) = a. (9) 

We will  now c o n s i d e r  m o r e  t ho rough ly  the second  condit ion (8) at  the sought  boundary .  Motion in the 
q u a s i r i g i d  zone is analogous  to the motion of  a p e r f e c t l y  r ig id  body,  and (1) with (3) will  y ie ld  

1 0 (xk~) = f (t), (10) 
X k OX 

w h e r e  the  ce r t a i n  funct ion f(t) is ye t  to  be d e t e r m i n e d .  The gene ra l  solut ion to Eq. (10) is 

x _+.x_kc(t ) (11) = f (t) ~ 5  

with c(t) denoting an a rb i t r a ry  function. The tangential shearing s t ress  vanishes at x - -  0 and, therefore, 
c(t) - 0. Considering condition (7) at the sought boundary, we obtain the distribution of tangential shearing 
s t r e s s e s  within the quas i r ig id  flow zone:  

x (12) 
= - 2:0 ~ (t) 

Rela t ion  (8) can be eas i ly  de r ived  f r o m  (12), if one c o n s i d e r s  tha t  the v e l o c i t y o f  the  fluid and the d i s t r i -  
bution of  tangent ia l  s h e a r i n g  s t r e s s e s  change  s m o o t h l y  at the boundary  between both flow zones x = b(t). 

We now in t roduce  the  d i m e n s i o n l e s s  quant i t ies  

x :  x ~ _5_* 2:o - - ;  A = - - ;  x =  ; s = - - ;  
a a 2:, 2:, 

"~ = ~ t ;  ~ = ,p.a,  
pa 2 T, 

w h e r e  , 
can  be  fo rmu la t ed  as  fol lows (the dashes  ove r  symbo l s  for  d i m e n s i o n l e s s  quant i t ies  will  be omit ted) :  

is a c h a r a c t e r i s t i c  s t r e s s  in this p r o b l e m ,  equal  to a~o~. In d i m e n s i o n l e s s  f o r m ,  the p r o b l e m  

x 

1 0 (xk.c) = __ q~ (t) -r ~ -  dx, 
X ~ ~ 

1 

(13) 

2: (x, t)Jx=a(0 ----- - -  s, (14) 

I o ] (:5) 
x ~ Ox. (xk~) I -- (k-}-1) s--~-  *=~(o A (t) ' 

A (0)'-~ I. (16) 

Let us then consider the so-called reverse problem: assuming the function A = A(t) to be known, 
we a r e  to d e t e r m i n e  the d i s t r ibu t ion  of  tangent ia l  s h e a r i n g  s t r e s s e s  within the  v i scous  flow zone ~(t)  < x < 1 
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and to e s t a b l i s h  how the p r e s s u r e  g r a d i e n t  m u s t  v a r y  with t i m e  so that  such  a flow wil l  r e s u l t .  

F r o m  (13) at  x = A(t), with condi t ion  (15) at  the sought  bounda ry ,  we obta in  

A 

~ -~ -  dr. 

I 

x A x 

Not ing  that  ~ & dr : ff & .j at u dr + f ex 
J ot 

1 1 A 

and us ing  r e l a t i o n  (17), we obta in  

x~ ( x ~ )  = - -  ( k + = ~ dx. 
' , j  at 

A 

(17) 

Mul t ip ly ing  both s ides  of this  equat ion  by x k and then in t eg ra t ing  the r e s u l t  with r e s p e c t  to x f r o m  A to x,  
with condi t ion (14) taken  into account ,  we obta in ,  a f t e r  s i m p l e  c a l c u l a t i o n s ,  

Ak s x~+X--Ak+X 1 (x~ ( & d x d r .  (18) 
~ = - -  S x k  A x k ~- ~ ., . at 

A A 

The i n t e g r o d i f f e r e n t i a l  equat ion (18) can ,  for  su f f i c i en t l y  smooth  funct ions  & = A(t),  be so lved  by the m e t h -  
od of s u c c e s s i v e  a p p r o x i m a t i o n  with the fol lowing s c h e m e  of i t e r a t i o n s :  

A ~ s x ~ + ~ - A  ~+~ , 1 xl ~ dxdx, 
~(n) = __ s xT - -  -A- x k ~ x k . Ot 

A A 

n = 1 , 2 , 3  . . . .  
A '~ s x r~'+l ~ A 1~+I 

T (e) : - -  S 
x t~ A x k 

I n s e r t i n g  the  ca l cu l a t ed  va lues  of T(n) into (17), we obtain the s equence  of func t ions  ~0(n)(t): 
A 

1 

(r176 = (k + I) 
a (t) 

(19) 

(20) 

tgA 

1,o 
3 
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Fig.  ! F ig .  2 

Fig .  1. Qua l i t a t ive  c o n v e r g e n c e  p a t t e r n  of the i t e r a t i on  p r o c e s s ,  with c~ 
= 5: 1) ~o 1 (s = 0.2); 2) g02 (s = 0.2); 3) q~l (s = 0.6); 4) ~2 (s = 0.6); 5) % (s 
= 0.6); 6) eft0 (s = 0.2); 7) A (s = 0.2); 8) A (s = 0.6). 

F ig .  2. C h a r a c t e r i s t i c s  of p lane  flow, with ~ = 3: 1-4) ~2; s = 0.8; 0.6; 
0.4; 0.2, r e s p e c t i v e l y ;  5) s = 0.8; 6) 0.6; 7) 0.4; 8) 0.2. 
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Fig. 3. Effect  of pa r ame te r  ~ on the flow charac te r i s t i cs  in a plane 
channel, with s = 0.4- 1-3) ~02, a = 5; 3; 1, respect ively;  4-6) A, ~ = 1; 
3; 5. 

F ig .  4. Charac te r i s t i c s  of cyl indrical  flow, with a = 3: 1-4) ~02, s = 
= 0.3; 0.4; 0.1; 0.2, respect ively;  5-8) &, s = 0.4; 0.3; 0.2; 0.1. 

For  specific resul ts  in t e r m s  of the displacement  of the boundary between viscous and quasirigid 
flow as a function of t ime,  we use the relation 

g = (1 -t- k) s ~ [1 - -  (1 ~- k) s] e -~.  (21) 

This function approaches unity as the l imit  at t ~ 0, according to condition (16), and represen ts  the t r ans i -  
tion to s teady-s ta te  flow at t ~ oo. The maximum value 

A s = (1 + k)s (22) 

cor responds  to s teady flow of a viscoplast ic  medium due to a constant p r e s s u r e  gradient.  P a r a m e t e r  a 
cha rac te r i zes  the speed at which steady state is reached.  The convergence of the iteration process  is 
depicted in Fig. 1 on a qualitative basis.  In Fig. 2 a re  shown values based on the third approximation for 

=~0(t) in the plane case with a = 3, in Fig. 3 is shown the effect of pa rame te r  a on the variation of the 
p r e s s u r e  gradient  with t ime, and in Fig. 4 are  shown ~p(t) curves for the cylindrical  case .  
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is the t ime; 
is the density; 
is the yield shear ing s t r e s s ;  
is the dynamic viscosi ty;  
is the velocity;  
is the space coordinate;  
is the charac te r i s t i c  channel dimeasion; 
is the modulus of the p r e s s u r e  gradient;  
is the s y m m e t r y  pa rame te r  in the problem; 
is the tangential shear ing s t r e s s ;  
a re  the boundary between viscous flow and quasirigid flow zone; 
a re  the a r b i t r a r y  ftmetions; 
is the cha rac te r i s t i c  s t r e s s  in the problem; 
is the plas t ic i ty  pa ramete r ;  
is the order  number  of iteration; 
is the t ime constant of the tes t  function; 
is the maximum value of A(t). 
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