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Analyzed is the reverse problem of the transient gradiental flow of a Shvedov—Ringham
plastic through a flat channel and a cylindrical pipe. Equations are derived for determining
the distribution of tangential shearing stresses and for the pressure gradient as a function
of time, these equations to be solved by an iteration scheme which is shown here.

Viscoplastic media represent one of the most important rheological models of a continuous medium
in petroleum mechanics. The state of the art in research on the hydrodynamics of viscoplastic media
(Shvedov—Bingham plastics) has been surveyed in [1, 2]. The problem of the transient gradiental flow of
a Shvedov—Bingham plastic has been solved in [3] by the method of successive approximations. Here we
will use the method of successive approximation for solving the reverse problem of the transient gradiental
flow of a viscoplastic medium.

We consider the following problem. A viscoplastic medium with the density o, the yield shearing
stress 7,, and the dynamic viscosity p (rheological parameters of the medium) begins at time t < 0 to flow
through a flat channel (—a < x < a) or a cylindrical pipe (0 <x < @) at a velocity u = u(x, t) (x denoting the
transverse coordinate) due to a pressure gradient ¢(t) which varies in time. The flow equation for a con-
tinuous medium will be
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with 7 = 7(x, t) denoting the distribution of tangential shearing stresses and with k = 0 for the plane case or
k =1 for the cylindrical case (axial symmetry). The rheological law for a viscoplastic medium in one-

dimensional rectilinear motion with 8u/8x < 0 (in the plane case we consider the upper half of the channel)
becomes
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The channel wall at x = @ remains stationary throughout the time interval under consideration and,
therefore, according to the hypothesis that the fluid adheres to the wall, we have

u(a, t)=0. (4)

as the kinematic constraint on the velocity of the fluid medium. Integrating Eq. (2) with respect to variable
x and considering the condition at the channel wall, we have

u(x, t‘):-—l—\gvrdx%— IO*(x——~a)‘ (5)
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Relation (5) will yield the velocity of the fluid, if the distribution of tangential shearing stresses is known.

The flow equation (1) can be rewritten as
f‘ dx—+q><t>+——(xkr) ©®

The condition for the existence of a quasirigid core in the stream within x = §(t) is the first condition at
-the sought boundary:

T(x, Dlemsity = — Tp- (7

This quasirigid core in the stream moves as a single body and, as a consequence, we have

L9 ey (k1) (8)

x* dx =b1(t) 69

Since the flow evolved from a condition of rest, when the entire region had been quasirigid, hence the
following initial condition applies to 6(t):

8(0) = a. 9)

We will now consider more thoroughly the second condition (8) at the sought boundary. Motion in the
quasirigid zone is analogous to the motion of a perfectly rigid body, and (1) with (3) will yield

10 k= f 2 10
S 2w =10, (10

where the certain function f(t) is yet to be determined. The general solution to Eq. (10) is

1=f(t)k—_’£r—1—]—x"kc(t), (11

with c(t) denoting an arbitrary function. The tangential shearing stress vanishes at x — 0 and, therefore,
c(t) = 0. Considering condition (7) at the sought boundary, we obtain the distribution of tangential shearing
stresses within the quasirigid flow zone:

T, — . 12
T 50 (12)

Relation (8) can be easily derived from (12), if one considers that the velocity of the fluid and the distri-
bution of tangential shearing stresses change smoothly at the boundary between both flow zones x = 6(t).

We now introduce the dimensionless quantities
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where 7 is a characteristic stress in this problem, equal to ¢¢.. In dimensionless form, the problem
can be formulated as follows (the dashes over symbols for dimensionless quantities will be omitted):

19 by — (o 13
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T, Dig=apy = —S5, (14)
A (15)
x* Ox r=aw) A(f)
AQ)'=1. (16)

Let us then consider the so-~called reverse problem: assuming the function A = A(t) to be known,
we are to determine the distribution of tangential shearing stresses within the viscous flow zone a{t) <x <1
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and to establish how the pressure gradient must vary with time so that such a flow will result.
From (13) at x = A(t), with condition (15) at the sought boundary, we obtain

A
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9=+ ) '.gatm (17)
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Noting that S‘aal dx = S‘% dx + j.%rz dx and using relation (17), we obtain
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Multiplying both sides of this equation by xK and then integrating the result with respect to x from A fo x,
with condition (14) taken into account, we obtain, after simple calculations,

X
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The integrodifferential equation (18) can, for sufficiently smooth functions A = A(t), be solved by the meth-
od of successive approximation with the following scheme of iterations:
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Inserting the calculated values of 7M™} into (17), we obtain the sequence of functions ¢{n)(t):
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Fig. 1. Qualitative convergence pattern of the iteration process, with «
=5:1) ¢y (8 =0.2); 2) @, (5 =0.2); 3) ¢, (s =0.6); 4) @y (8 =0.8); 5) ¢, (8
=0.6); 6) ¢, (8 =0.2); TV A (s =0.2); 8) A (s =0.6).

Fig. 2. Characteristics of plane flow, with o = 3: 1-4) ¢,; s = 0.8; 0.6;
0.4; 0.2, respectively; 5) 8 = 0.8; 6) 0.6; 7) 0.4; 8) 0.2.
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Fig. 3. Effect of parameter a on the flow characteristics in a plane
channel, with s = 0.4: 1-3) ¢,, @ =5; 3; 1, respectively; 4~6) A, a =1;
3; 5.

Fig. 4. Characteristics of cylindrical flow, with @ =3: 1-4) ¢, s =
=0.3; 0.4; 0.1; 0.2, respectively; 5-8) A, s =0.4; 0.3; 0.2; 0.1.

For specific results in terms of the displacement of the boundary between viscous and quasirigid
flow as a function of time, we use the relation

A=(1+k)s+[1 —(1 +k)sle*. (21)

This function approaches wnity as the limit at t — 0, according to condition (16), and represents the transi-
tion fo steady-state flow at t — «, The maximum value

A= (14+k)s (22)

corresponds to steady flow of a viscoplastic medium due to a constant pressure gradient. Parameter o
characterizes the speed at which steady state is reached. The convergence of the iteration process is
depicted in Fig. 1 on a qualitative basis. In Fig. 2 are shown values based on the third approximation for
¢ =@(t) in the plane case with a =3, in Fig. 3 is shown the effect of parameter @ on the variation of the
pressure gradient with time, and in Fig. 4 are shown ¢(t) curves for the cylindrical case.

NOTATION

is the time;

is the density;

is the yield shearing stress;

is the dynamic viscosity;

is the velocity;

is the space coordinate;

is the characteristic channel dimension;

is the modulus of the pressure gradient;

is the symmetry parameter in the problem;
is the tangential shearing stress;

, A are the boundary between viscous flow and quasirigid flow zone;
c are the arbitrary functions;

is the characteristic stress in the problem;
is the plasticity parameter;

is the order number of iteration;

is the time constant of the test function;

s is the maximum value of A(t).
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